Studio Tour
 Activity Book

Welcome to KTEH, public television for Silicon Valley and the Central Coast. For more than forty years, KTEH has been a bright, steady source of inspiration that values education, integrity, and fresh ideas. Through our exceptional programming schedule and community outreach efforts, we seek to enrich lives, encourage idealism, and open minds.

Service to its community is at the heart of KTEH's mission. Our outreach campaigns combine educational programs, productions and activities to address community concerns. KTEH partners with community groups with similar missions to crepartners with community groups with similar missions to cre-
ate outreach campaigns, which address school readiness for young children, parenting issues, environmental awareness, drug and alcohol abuse, reading, and much more.

KTEH relies on membership support to produce and broadcast extraordinary programs of excellence and distinction. Your support also helps us provide a variety of services which help to improve the school readiness of young children. Nearly 55 percent of our operating budget comes from viewers like you and we are very grateful for your support!

Thanks for Visiting,
Becca King Reed

NePB коед ктЕН коет коЕІ

Northern California Public Broadcasting

KTEH's first broadcast on 19 October 1964, withW. Lindy Wade (coordinator of instructional television) Dr. C.R. Timpany (Superintendant of schools) and Ralph Hammer (Associate Superintendant) watching.

geation network at the heart of KTEH's mission.
ombine educational programs, pro-
ddress community concerns. KTE
roups with similar missions to cre
issues, environmental awareness,
ading, and much more.

[^0]

KTEH - Brilliantly British

ACROSS
1 Ian McShane's US TV hit.
3 Julia Sawalha played the put-upon daughter in the hit comedy (abbr.)
64 Weddings and a Funeral and Vicar of Dibley writer \qquad Curtis
11 Stphen Fry keeps 'House' for his master.
13 Dawn French's Dibley occupation.
14 The Fab
15 Jonathan's river
16 The British Cold Case, \qquad the Dead
18 Your favorite place for British shows.
19 Kingdom star Stephen
20 Betty Slocombe and Captain Peacock's workplace.
22 Casablanca song.
23 Gardening detective \qquad \& Thyme

DOWN
2 Dame Judi \qquad
4 Brilliantly \qquad
5 Waiting for \qquad
8 Hyacinth Bucket social Bucket climbs up the social ladder in Keeping Up

9 Speaker of "It's elementary"
10 Monday classic drama.
12 He travels via a police box
17 Jolly \qquad

A RIGGS CONCERT CODE

Can you crack the code and get ready to rock?

 " 5 (3)

Rages stars five colorful canine characters and their wisecracking pet cat, Dumpster, who hang together in their own colorful clubhouse. However, Riggs and his friends are not your average canines - they're also talented musicians and together make great rock ' n ' roll music as the Riggs Band.

Catch Rages Weekdays at 9 AM and 1:30 PM and weekends at 7:30 AM

People and things in a television studio

People and things in a television studio

Use the lables on the previous page to find the words...
remicrophoneoloret areganamroolfrrete crcpmsdamioeoogoan tiedepi itottotbevi hanerdraeaal rcoptm arotareporevreseoi romecccseeroerkrrx soctortptmtoeintai ortoneoccaotmdapvn cxratartrclellbrrg rotarenegretcarahc ereeoeptdcoeocodao enmclopotanmiitlln eacaoedo i rhornioas crtiaourgtnschnoeo videoswi tchercorol vutcstserver remote armstainceleateoro

Archimedes' Recipe for Pi

One of Archimedes' many mathe matical accomplishments was his computation of pi, which is the ratio of the circumference of a circle to its diameter. In this activity, you will duplicate the method he used to arrive at his estimate.

Procedure
1 Construct a data table on a sep rate piece of paper that contains the headings shown in the table below.

2 Use your compass to draw three circles on another piece of paper. Each circle can be a different size, but each should be at least 2.4 inches (6 centimeters) across.
3 Use a ruler to divide one circle into four equal pie-shape pieces. Be sure to extend your lines outside the circle. Then, using the ruler, create a square by drawing straight lines inside the circle to connect the points where the lines meet the circle.

4 Connect the lines around the outside of the circle to create a second square that just touches
the circle's outside edge. Make sure that the straight line for each segment touches the circle at the segment's halfway point.

5 Measure one side of the inside square. Multiply that length by the number of sides in the square (four) to find the perime ter of the inside square. Record your results in the table. Repeat the process for the outside square.
6 Use the ruler to find the diameter of the circle and record this measurement.

7 The perimeters of the squares give approximate values for the circumference of the circle. Determine the value of pi by dividing the length of each perimeter by the diameter of the circle. Record your results for both the inside and outside squares.
8 Repeat the process for the second circle, using octagons eight-sided polygons) instead of squares. Make eight equal pie-shape pieces. Then

repeat the process again for the third circle, using hexadecagons (16-sided polygons).

Questions

Write your answers on a separate piece of paper.

The actual value of pi to four dec imal places is 3.1415 . Compare the range of values you found for each set of polygons to this number. Do all three ranges include the actual value of pi? Which type of polygon gave the most accurate range of values?

2 Archimedes calculated the value of pi for polygons containing 96 sides. Do you think his calculations were more or less accurate than yours? Explain

Polygon Name	\# of Sides	Length of Side (in cm)		Perimeter of Polygon (= number of sides x length of 1 side)		Diameter of Circle (in cm)	Value of Pi (=perimeter/diameter)	
		inside polygon	outside polygon	inside polygon	outside polygon		inside polygon	outside polygon
Square	4							
Octagon	8							
Hexadecagon	16							

Often imitated, but never duplicated, NOVA is the original science series that the other channels look to for inspiration. For over thirty years NOVA has explored the universe from subatomic particles to the Big Bang.

Train Your brain

Can you train your brain to ignore something? Today's challenge-called a Stroop test-plays a little trick on you. But maybe you're too quick for the trick!

Figure 1. To make a
grid, draw 16 boxes
Get what You need.

- 2 blank 4×4 grids (to make a grid, copy Figure 1)
- 2 blank 4×4 grids (to make a grid, copy
different colors \bullet Ruler • Stopwatch or clock
Part I: The words match the colors

(1) Fill in one grid. Choose a marker. Use it to write the name of its color in one of the grid boxes. For example, if you chose a red marker, you'd write the word RED in one of the boxes. Fill in the

Play the game. Have one person be the Timer and one be the Reader. When the Timer says, "GO," the Reader reads the word in each box out loud. If you make a mistake, read the word again correctly. On the chart below, record how words correctly.
(3) play again. Switch roles. Repeat Step 2.

Time in Part 1	Reader 1	Reader 2
Prediction for Part 2		
Time in Part 2		

(4) Fill in th name of a color ther grid. Now, write the So, if you chose a red marker, you'd write BLUE, GREEN, or YELLOW, etc. in a box. Fill in the grid GREEN, or YELLOW, etc. in a box. Fill in the grid
(5) make a prediction. How long will it take you to name the ink colors instead of reading the words? Write your prediction in the table below.
(6) Play again. Play as in Step 2. But this time, the Reader says the color of the ink used in each box Reader says he color of the ink used in each box. red marker, you'd say "RED." Record how long it takes the Reader to say all 16 colors correctly. Switch roles and play again.

WordGirl has a message for you! And she has left you lots of clues!
Start by filling in the letters in the blank message that are provided in the table. For example, " A " = 9. For each " 9 " in the message, put an " A " in the blank above.

Some letters will be missing and you will have to use your vocabulary and detective skills to solve the puzzle and read the message from WordGirl. Extra Hint: The letters

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
9			20	26			17	25			19		1	2	14		24	16	18		5				22

$$
\overline{21} \overline{2} \overline{24} \overline{20} \overline{7} \overline{25} \overline{24} \overline{19} \quad \overline{16} \overline{2} \overline{19} \overline{5} \quad \overline{26} \overline{16} \quad \overline{9} \overline{19} \overline{19}
$$

$\begin{array}{llllllll}2 & 13 & \overline{17} & \overline{26} & \overline{24} & \overline{19} & 25 & 14 \\ 14 & \overline{26} & \overline{24} & 8\end{array}$
$\overline{14} \overline{24} \overline{26} \overline{20} \overline{25} \overline{23} \overline{9} \overline{4} \overline{26} \overline{1} \overline{18} \overline{16} \quad \overline{21} \overline{25} \overline{18} \overline{17}$
$\overline{17} \overline{26} \overline{24} \quad \overline{20} \overline{22} \overline{22} \overline{19} \overline{25} \overline{1} \overline{7}$

$$
\overline{5} \overline{2} \frac{1}{23} \frac{}{9} \frac{}{11} \frac{15}{19} \overline{9}_{9}^{24} \frac{}{8}
$$

Now use the same code to make a new cryptogram message for your friends!

Wordgirl is a superheroine from the planet Lexicon. She uses her superior vocabulary skills to fend off villains such as Granny May, The Butcher, Chuck the Evil Sandwich Making Guy and Dr. Two-Brains.

Wordgirl saves the day, weekdays at 4 PM

KTEH is a service of Northern California Public Broadcasting.
The studio tour activity book is © 2008 NCPB, Sesame Workshop, PBS, Raggs LLC, Soup2Nuts, WGBH and Maurine Starkey.

Puzzle solutions can be found at www.kteh.org/[tba]

[^0]:
 #### Abstract

 ,

